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The effectiveness of studying Brownian Motion has improved significantly since the advent of
digital recording devices. In the past, this experiment was conducted by viewing suspended particles
through a microscope and attempting to track the particles by marking paper at regular intervals.
Utilizing a high frame rate digital camera and specialized particle tracking software improves the
efficacy of this experiment significantly. So much so, that this method can now be used to study the
visco-elastic properties of the solution. During Capstone 1, this project designed an experimental
procedure, and collected data from samples of pure water containing microbeads. In Capstone 2,
the accuracy of the data was analyzed and the viscosity of solutions containing various ratios of
glycerol was studied. These experiments found that the procedure described in this paper produced
viscosity data that were consistently within two standard deviations of theoretical values.

Background

Brownian Motion was first observed by Robert Brown
when he saw chaotic motion of tiny pollen particles sus-
pended in water, originally he thought this might be due
to biological organisms. Albert Einstein later theorized
that this motion resulted entirely from the atomic nature
of matter and could be explained as collisions between
the particle and the molecules of the solution.1 Einstein’s
hypothesis was tested by the French physicist, Jean Bap-
tiste Perrin, who had developed a technique for creating
precise spherical particles around 1× 10−6 meters (1µm)
in size. To observe the chaotic motion, the particles were
suspended in water and observed through a microscope
and camera lucida, which allowed the image of the mi-
croscope slide to be superimposed on a drawing surface.
The position of the particles were then marked at regular
time intervals.2 This experimental process can be greatly
improved by using a digital camera and particle tracking
software.3

Theory

The motion of the suspended particle can be mod-
eled as the sum of the impulses on the particle during
a given instance (dt). Consider the interaction between
one molecule of the solution and the particle being stud-
ied. During the collision the particle is subject to a force
Fi(t). Over a given time dt the impulse of this force is
defined as:

Ji =

∫
Fi(t)dt (1)

Given the relative size difference between the particle and
the individual molecules which comprise the solution, one
can imagine many thousands of impulses in a short time
dt. The total force on the particle during a given time dt
is the sum of all such impulses.

F (t)dt =
∑
i

J (2)

Where F (t) is given by Paul Langevin’s equation describ-
ing a viscous fluid:

F (t)dt = −αv(t)dt+ F (r)(t)dt (3)

and where α is the viscous drag coefficient. Studied by
Stokes and found to be

α = 3πηd (4)

for sphere of diameter d in a fluid with viscosity given
by η. That term causes the particle’s velocity to tend
towards zero, while F r(t) represents the random force
applied by thousands of particulate collisions, causing it
to accelerate once again, and giving rise to the particle’s
chaotic motion. The randomly applied force F (t) cre-
ates a distribution in the particle’s velocity. Specifically,
one that satisfies the equipartition theorem, which states
that the kinetic energy of the molecules in a system is
proportional to the temperature.4 In one dimension this
can be expressed as:

1

2
m〈v2x〉 =

1

2
KBT (5)

where m is the mass, T is the temperature, KB is the
Boltzmann constant, and 〈v2x〉 is the average velocity for a
large population size. The underlying statistics governing
the chaotic motion come from an application of the cen-
tral limit theorem, which states that if many numbers are
randomly drawn from the same probability distribution,
the sum of these numbers will be a Gaussian-distributed
random number.3

Specifically the theorem predicts that N random num-
bers drawn from any probability distribution, with a
mean of µi and variance σ2

i , then the sum of those num-
bers

∑
N will result in a Gaussian distribution with

mean µ = Nµi and a variance of σ2 = Nσ2
i .

In the study of Brownian Motion the mean displace-
ment (∆r) of the particle is equal to zero, since the dis-
placement in either direction is equally likely. However
the mean squared displacement (MSD) is the variance of
the resulting Gaussian.4 In one dimension:

σ2 = 〈∆r2〉 = 〈∆x2〉 = 2Dt (6)
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where D is the diffusion coefficient defined as:5

D =
KBT

α
(7)

Einstein was the first to theorize a correlation between
the Diffusion Coefficient (D) and the variance of the dis-
tribution. This created an important link between viscos-
ity, temperature of the solution, and the random motion
exhibited by a suspended particle.3 Einstein’s theoretical
description forms the basis for this study of Brownian
Motion.

Experimental Design

These theoretical predictions can be studied by using a
digital camera with a fast frame rate in combination with
a microscope. This can be achieved by using a trinocular
microscope design, which allows a camera to be easily
attached and shares an optical path with the traditional
eyepieces. For this experiment, a traditional binocular
microscope was modified by removing one of the eyepiece
lenses and a digital camera was mounted using set screws.
The camera used for this was a DMK 33UX178 purchased
from Imaging Source, with a frame rate up to 60 frames
per second. Using the propriety software that comes with
the camera, high frame rate footage was recorded of the
sample on the microscope slide. The camera software
allows gain and exposure to be adjusted until particles
are most visible and contrast is high. A high contrast
allows for easier particle identification later on.

The microscope slides were prepared in a way to re-
duce outside interference like wind currents. This was
done by drawing a square with petroleum jelly on one
slide, injecting the solution in the square shape, then
placing another glass slide on top to create a seal. The
solutions contained polystyrene micro particles, with a
factory stated radius of 0.495 µm. The particles were
donated from Dr. Thurston’s lab at RIT and came in a
solution of water and microparticles. 10 µl of this particle
containing water was mixed with glycerol and more water
in various ratios until the total liquid amounted to 100
µl. The solutions were combined by hand using a pipette
until thoroughly mixed and uniform throughout. 20 µl of
the sample solution was injected onto microscope slides
using the previously described technique. The samples
were allowed to settle for 10 minutes after being created
in order reduce extraneous movements introduced during
the injection process.

Random error can be reduced by using a larger sample
size, so videos were recorded with several hundred frames
at 60 fps, approximately 15 seconds. These videos com-
prised the data sets used in the study. In order to eval-
uate the accuracy of the experimental procedure, several
samples slides were created of each ratio, then several
videos were taken of each sample slide. The raw video
data contained visible smudges, likely from the micro-
scope lenses. To improve the accuracy of the particle

tracking, the stationary background of the video was sub-
tracting using the imaging software ImageJ.6 The pro-
cessed video was then split into individual frames and
fed into a particle tracking algorithm. The algorithm
was written in Python and utilized functions from a pre-
existing particle tracking library, TrackPy, based on work
done by Eric Weeks. Complete documentation can be
found at http://soft-matter.github.io/trackpy.7 The be-
fore and after of background subtraction done with Im-
ageJ is shown below.

(a) before (b) after

FIG. 1: The video is processed with ImageJ using a
background subtraction macro

After the video file is processed, the next step is to run
the particle tracking software. There are important input
parameters that may have to be adjusted for each trial,
such as number of image frames, and most importantly
particle brightness. A technique which proved helpful
during this process was to initially analyze one frame
with a brightness set to a low value. This allowed all the
particles to be identified as well as some extraneous fea-
tures. This step of particle identification is visualized by
annotating the frame with red circles around the identi-
fied features.

FIG. 2: The initial identification step which has
intentionally identified extraneous features. This

ensures each particle is tracked, then the extraneous
features are filtered out in a later step.

Then a histogram is made after the first annota-
tion/identification step, comparing number of features
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identified with brightness (also referred to as mass).

FIG. 3: A histogram comparing number of particles to
the particle brightness (mass). This helps the user

determine what to input for brightness (mass) in the
following steps.

After viewing the histogram plot, the script waits for
the user to input a value for particle brightness. The
frame is then redrawn with annotated features based on
the supplied value. This technique allows us to first get
an estimation for brightness based on the histogram, then
verify that the algorithm is identifying particles accu-
rately. Once the user has verified particles are being cor-

FIG. 4: Based on user input, only particles in focus are
now identified for tracking.

rectly identified, a batch analysis is run on all frames in
the video. With the parameters set, the script analyzes
each frame of the video, calculates individual particle dis-
placements, and then links the displacements throughout
all frames to create a trajectory for each particle. Shown
in Figure 5 is an example of one such trajectory plot.

FIG. 5: Trajectory plot for many particles over the
course of several hundred frames.

Creating these trajectories is dependent on the algo-
rithm identifying and tracking each particle separately.
This involves parameters such as the max displacement
a particle can have between frames, and how many frames
a particle must be present for in order to be counted. A
high frame rate camera allows for more accurate track-
ing, since the particle displacement between frames can
be set very low (1-2 pixels). In addition, it was found
that setting the number of frames for which the parti-
cle is visible, to a high percentage (95%) of the total
video frames ensured that only consistently visible parti-
cles were tracked, which improves accuracy in subsequent
calculations.

The Trackpy library includes a drift-subtraction rou-
tine which greatly helps accuracy by removing the overall
drift, which is often present in the samples despite efforts
to isolate the system. After removing the drift and vi-
brational noise, the Mean Squared Displacement (MSD)
and averaged or Ensemble Mean Squared Displacement
(EMSD) can be calculated and plotted.

This plot can give great insights into the fluid proper-
ties of the solution. For particles undergoing stochastic
processes we expect this to be a linear trend, essentially
displacement is linearly correlated with a time interval.
Hypothetically if the solution was undergoing an active
process, such as ion transport, we could expect an over-
all positive slope indicating directed motion. One can
imagine several scenarios that might be reflected in the
MSD plot and these could be the study of further exper-
iments using this technique. From this data, a line is fit
to the EMSD, slope is extracted, and the diffusion coef-
ficient from the variance. A number of interesting values
can then be calculated using the diffusion coefficient in-
cluding; the Bolzmann constant, Avagrado’s number, the
radius of the bead, the ideal gas constant, and the tem-
perature of the solution.5 These would be typical calcu-
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FIG. 6: Plot of Mean Squared Displacement for
individual particles over the course of several hundred

image frames.

FIG. 7: An average of the individual MSD’s from the
previous figure, plotted with a fit line. This EMSD data

is used to calculate the diffusion coefficient.

lations performed in an undergraduate laboratory. The
results produced in this project are described in the next
section.

Data Collection and Analysis

During Capstone 1 the experimental procedure was
done with solutions containing microbeads and pure wa-
ter. During Capstone 2, the procedure was performed
with solutions of various viscosities. These were solu-
tions of microbeads, water, and various amounts of glyc-
erol. The samples analyzed were prepared in ratios 0%,
20%, 40%, and 50% glycerol to water. For the sample of
pure water, the diffusion coefficient was found by averag-

ing the results from 5 separate samples and 40 different
trials total. The diffusion coefficient was found to be
0.45±0.02µm2/s, within one sigma of the nominal value
0.445µm2/s, found by Catopovic et al..5

The diffusion coefficient was then used to calculate the
Boltzmann constant and compared with the known value.
Those values are compared in table I.

Theoretical 1.38×10−23J/K

Measured 1.26±0.05 × 10−23J/K

TABLE I: Value of Boltzmann Constant calculated
using our value for the Diffusion Coefficient versus the

accepted value. Our value agrees within 3 sigma.

For the viscous solutions of glycerol and water, the
diffusion coefficient was used to calculate the dynamic
viscosity of the solution. There is no theoretical model
for the viscosity of an arbitrary mixture of two fluids.
Thus we have used models developed specifically for so-
lutions of glycerol and water. The theoretical values
were obtained from models created by Andreas Volk and
Christian Kähler8 based on modifications to work done
by Nian-Sheng Cheng9. The scope of data collection was
limited due to the ongoing COVID-19 pandemic, however
for mixtures of 20% and 40% a minimum of 3 samples
and 30 trials were taken. For the 50% mixture 1 sam-
ple was studied in 8 trials, thus the data is considered
insufficient but included for completeness. The results of
these trials are summarized in table II.

Percent Glycerol Measured Viscosity Theoretical Viscosity

20% 1.9±0.1 mNs/m2 1.77 mNs/m2

40% 4.0±0.2 mNs/m2 4.18 mNs/m2

50% 6.31±0.02 mNs/m2 7.12 mNs/m2

TABLE II: Viscosity values for 40% and 20% agree
within 1 and 2 sigma respectively. The data collected
for 50% is considered insufficient. Sources of error for

these values is discussed in the following section

The results of these trials were averaged, including the
sample of pure water, and plotted against a curve of the-
oretical viscosity values for a temperature of 24◦C.

In addition, the measured values were plotted against
theoretical values and fit with a line. For a perfectly
accurate experiment the slope of this line would be equal
to 1. The resulting slope had a value of 1.10 with a
percent error of 0.03. A value 10% higher than perfect
accuracy. This suggests that there could be a systematic
error causing the measured values to be consistently lower
than theoretical. The potential source of this error is
discussed in the next section.

The ultimate goals of this capstone project were to
collect more samples at different viscosities in order to
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FIG. 8: The data falls both above and below the curve
of theoretical values suggesting there is not a significant
source of systematic error. With more data collection

the error could be better estimated.

FIG. 9: Measured values that perfectly match
theoretical would have resulted in a slope of 1. The

resulting slope was m=1.10 ±0.03.

more accurately gauge the effectiveness of this experi-
mental technique, then continue experimentation with
visco-elastic solutions. These solutions would have had
different properties and result in different particle mo-
tion behaviour which could have potentially been ana-
lyzed using the Mean Squared Displacement data in a
similar way. However the data obtained thus far shows
that the measured values are within 10% of the theoret-
ical calculations, making this a viable experiment for an
undergraduate scenario.

Sources of Error

The level of accuracy obtained was the result of im-
proving the experimental technique throughout Capstone
1 and 2. For example, visible spherical aberrations were
reduced by restructuring the camera mounting system,
which allowed the particles to be more accurately viewed
through the lenses, and thus more accurately tracked.
Preparation of the microscope slide was also improved
simply by repetition. Besides improvements to the phys-
ical set up, the software implementation was also im-
proved. By repeating trials with slight variations and
comparing results, the key input parameters for accurate
particle tracking become more obvious. For example, ac-
curately choosing the max displacement between frames
saw almost a 20% difference in values, whereas setting
the diameter as a tuple saw virtually no change in the
calculated values.

Another important parameter is the particle lifetime,
or the number of frames it is visible for. Setting this to a
high percentage of the total frames means that only parti-
cles which are consistently visible will be tracked. Know-
ing which parameters can remain the same throughout
trails and which parameters need to be tuned for the
specific trial allows the experiment to be carried out with
more efficacy. Despite these improvements work can still
be done to increase the accuracy. It has been shown the-
oretically that the error in this method is primarily due
to sampling error, measurement uncertainty (tempera-
ture, radius), tracking error, and vibrational noise and
drift.5 The method used in this paper attempts to cor-
rect for overall particle drift, so theoretically the error
is produced by sampling error, tracking error, and un-
certainty in measureables like temperature and particle
radius.

As shown in the table below, the temperature on or
near the microscope slide increases with time. These
measurements were done using a Black and Decker laser
thermometer. The large temperature variations in time

Time Temperature (F)

0 minutes 71

8 minutes 72

20 minutes 74

30 minutes 77

TABLE III: Temperatures measured on the microscope
slide with a laser thermometer after the microscope

light was left on for the stated time.

is likely due to the older design of the microscope and
inefficiency of the halogen bulb, which creates a consid-
erable amount of heat if left on for an extended period of
time. In order to reduce uncertainty in temperature, the
microscope lighting element was turned off when not in
use and only left on when recording video data. By re-
ducing excess heat from the light source (like that shown
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in the table), we expected the temperature of the slide
to be relatively close but slightly higher than the room
temperature. The room temperature itself is subject to
fluctuations, especially considering the time period for
data collection was on the scale of months. Using room
temperature data that was collected during previous ex-
periments, and the time vs heat data, the temperature
on the microscope slide was estimated to be 24◦Celsius.
This was likely the largest source of random error in our
experimentation. As discussed in Catipovic’s detailed
analysis of error sources, a temperature uncertainty of
1◦C would create a 2% uncertainty in the macroscopic
viscosity.5 This estimate seems reasonable for our exper-
imental set up. Using the measured value for diffusion
coefficient in pure water, we calculated the Boltzmann
constant to be 1.26±0.05×10−23 J/K. Compared to the
nominal value of 1.38 × 10−23 J/K. Assuming our value
of diffusion is correct, the temperature would be equal
to 21.8◦C in order to accurately calculate the Boltzmann
constant, as discussed this would also change value of
viscosity. This loose calculation gives us an estimate of
the uncertainty in temperature which falls slightly out-
side the 2% range previously described. Measuring the
temperature across a microscope slide is a known issue
for temperature dependent microscopy experiments.

Another source of random error is fluctuations in the
particle diameter. The beads used in this experiment
are stated to have an accuracy of 0.01 µm. Utilizing
Trackpy’s built in drift-subtraction routine should correct
for systematic errors in drift. Since Brownian Motion
is a stochastic process, it follows Poisson statistics, and
taking more samples should reduce the error, which is
why each data set consisted of several hundred image
frames.

Conclusion

The experimental procedure developed during this
Capstone project produced results that were within an
accuracy range acceptable for the Modern Physics Labo-
ratory. The procedure could be documented and turned
into a laboratory experiment for the Modern Physics
course. During Capstone 2 we demonstrated that this
technique can be used to evaluate the viscous properties
for different solutions. The experimental work was in-
terrupted by the ongoing COVID-19 pandemic. Given
more time we would have tested the limits of viscosity
analysis by using higher concentrations of glycerol and
potentially pure glycerol or other viscous solutions. In
addition the rheological properties of visco-elastic solu-
tions could have been analyzed through a process known
as microrheology. This is considered a novel way of per-
forming rheology, as typical experiments involve a rela-
tively expensive piece of equipment called a rheometer
and large amounts of solutions. This project has help
to show the validity of doing these types of experiments
using relatively inexpensive equipment and set up.
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